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1. Distribution of the speed of gas molecules at thermal equilibrium 

   

 Assume you are enjoying your winter vacation at a beautiful resort in Puerto Morelos, Mexico. You 

are drinking delicious Margarita with chilly salt on the tip of a glass at the pool bar staring at beautiful 

Caribbean blue.  You will also see people inside the pool from kids running all around the pool area to 

adults drinking Margarita like you. Then you suddenly become curious about something: ‘How gas 

molecules will behave at a certain condition?’ I am not sure whether this is the start of the derivation 

of the Maxwell-Boltzmann Distribution, but the concept is somewhat similar. The only difference is 

that we assume that all gas molecules are identical if they are in same mass, so we can express the 

speed distribution of the gas molecules in terms of probability as below. 

 

𝑃(𝑣𝑥, 𝑣𝑦 , 𝑣𝑧) ∙ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 

 
 

since x, y and z axis are independent to each other, we can split 𝑃(𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) as below 

 

 

𝑃(𝑣𝑥, 𝑣𝑦 , 𝑣𝑧) ∙ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 = 𝑃(𝑣𝑥)𝑃(𝑣𝑦)𝑃(𝑣𝑧) ∙ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A visual expression of the velocity of a gas molecule in Cartesian coordinate (left) and the 

velocity probability distribution approximate as a function of velocity (right) 
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Since  

𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2,  

(Note that 𝑣2 is the scalar value rather than the vector value) 
 

we can express 𝑃(𝑣𝑥)𝑃(𝑣𝑦)𝑃(𝑣𝑧) as the function of v by using 𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

 

𝑃(𝑣𝑥, 𝑣𝑦 , 𝑣𝑧) = 𝑃(𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2) =  𝑃(𝑣𝑥)𝑃(𝑣𝑦)𝑃(𝑣𝑧) 

 

As for the ad-hoc solution for these 𝑃(𝑣𝑥), 𝑃(𝑣𝑦), 𝑃(𝑣𝑧), we can come up with the Gaussian function 

that is often used in other theory (e.g., Harmonic oscillator). 

 Thus, 

𝑃(𝑣𝑥) = 𝐴𝑥𝑒−𝐵𝑥𝑣𝑥
2
    and 

 

𝑃(𝑣) =  𝑃(𝑣𝑥)𝑃(𝑣𝑦)𝑃(𝑣𝑧) = 𝐴𝑥𝐴𝑦𝐴𝑧𝑒−𝐵𝑥𝑣𝑥
2−𝐵𝑦𝑣𝑦

2−𝐵𝑧𝑣𝑧
2
 

 

The Gaussian function is very useful since it can be integrated to 1. Since the probability distribution 

should be integrated to 1,  

 

1 = ∫ 𝑃(𝑣)
∞

−∞

𝑑𝑣 = ∫ 𝐴𝑒−𝐵𝑣2
∞

−∞

𝑑𝑣 = 𝐴√
𝜋

𝐵
 

 

(using the Gaussian integral) 

Thus we can get, 

𝐴 = √
𝐵

𝜋
 

and we can express P(v) as below 

 

𝑃(𝑣) = √
𝐵

𝜋
∙ 𝑒−𝐵𝑣2

 

 

We call this above equation as the Maxwell-Boltzmann distribution and it looks pretty simple…wait! 

we still haven’t derived what is B! 

 

No worries, we will definitely derive B! This would be happening in the next section! 

  



2. Collision – Pressure – Velocity relationship of the gas molecule 

 

We know that the pressure of gas molecules inside a container is due to the collision between these 

gas molecules and the wall of a container. And the collision is the change in momentum with regard 

to the time difference! Based on this idea, at the end, we can get our mystery value B! 

 

Now, let us consider gas molecules colliding to the wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic diagram of gas molecules of individual mass m and the wall whose area is A. 

 

In the figure above, we are assuming only 1 dimension that is x-axis and assuming that all the gas 

molecules contains same x-axis speed (absolute value of vx). Of course, this assumption is totally wrong 

since what we want to derive is the distribution of speed of gas molecules at thermal equilibrium. 

However, we will fix this later, so let’s only think about 1-dimensional problem here. 

The blue-colored area indicates the range of possible region in which the gas molecules with velocity 

vx to the right direction can collide with the wall within the timescale of Δt (i.e., within Δt, only gas 

molecules within this blue-colored region will collide with the wall). Since we are assuming that gas 

molecules are equally distributed inside the container with number density n/V [mol/m3], we can 

calculate the number of the gas molecules colliding with the wall within the timescale of Δt. 

 

𝑁𝑐𝑜𝑙𝑙𝑖𝑑𝑖𝑛𝑔 =
1

2

∗

∙ 𝑁𝐴 ∙
𝑛

𝑉
∙ 𝐴 ∙ 𝑣𝑥∆𝑡 

(* 
1

2
 has been multiplied based on the assumption that a half of the gas molecules in the container will 

be traveling towards the wall and the rest half towards the opposite direction) 

 

Now, the force that has been applied to each gas molecule in ∆𝑡 can be derived as below 

 

𝐹𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 ∙ ∆𝑡 = ∆𝑝𝑥 = 𝑝𝑥,𝑓𝑖𝑛𝑎𝑙 − 𝑝𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −2𝑚𝑣𝑥 

 

where 𝑝𝑥 refers to the momentum of each gas molecule. Accordingly, the force that has been applied 

to the wall is then the product of 𝑁𝑐𝑜𝑙𝑙𝑖𝑑𝑖𝑛𝑔 and −𝐹𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒: 

 

𝑣𝑥 

−𝑣𝑥 
A (area) 

𝑑 = 𝑣𝑥∆𝑡 

𝑚 

−𝑣𝑥 

𝑣𝑥 

−𝑣𝑥 

𝑣𝑥 

−𝑣𝑥 

𝑣𝑥 

−𝑣𝑥 



𝐹𝑤𝑎𝑙𝑙 =  𝑁𝑐𝑜𝑙𝑙𝑖𝑑𝑖𝑛𝑔 ∙ 2𝑚𝑣𝑥 = 𝑁𝐴 ∙
𝑛

𝑉
∙ 𝐴 ∙ 𝑣𝑥∆𝑡 ∙ 𝑚𝑣𝑥 

Thus, 

𝐹𝑤𝑎𝑙𝑙 =
𝑛𝑚𝑁𝐴𝐴𝑣𝑥

2

𝑉
 

 

Surely, the pressure on the wall would be 

 

𝑃𝑤𝑎𝑙𝑙 =
𝐹𝑤𝑎𝑙𝑙

𝐴⁄ =
𝑛𝑚𝑁𝐴𝑣𝑥

2

𝑉
 

 

Do you remember that the assumption of all the gas molecules containing same x-axis speed is wrong? 

Now it is time to fix it. In statistics, we use the mean value (or expectation value) for expressing a 

certain property of the certain population. Thus, we can replace 𝑣𝑥
2 with 〈𝑣𝑥

2〉. 
 

𝑃𝑤𝑎𝑙𝑙 =
𝑛𝑚𝑁𝐴〈𝑣𝑥

2〉

𝑉
 

 

This allows us to define root mean square speed as below, 

 

𝑣𝑟𝑚𝑠 = [〈𝑣𝑥
2〉 + 〈𝑣𝑦

2〉 + 〈𝑣𝑧
2〉]

1
2⁄
 

 

Since x, y, and z are orthogonal and square value becomes scalar, 

 

〈𝑣𝑥
2〉 = 〈𝑣𝑦

2〉 = 〈𝑣𝑧
2〉 

 

Then we will get 

〈𝑣𝑥
2〉 =

1

3
𝑣𝑟𝑚𝑠

2 

 

𝑃 = 𝑃𝑤𝑎𝑙𝑙 =
𝑛𝑚𝑁𝐴𝑣𝑟𝑚𝑠

2

3𝑉
 

 

which is, 

𝑃𝑉 =
𝑛𝑚𝑁𝐴𝑣𝑟𝑚𝑠

2

3
 

 

FYI, if you couple the above equation with the ideal gas law (i.e., 𝑃𝑉 = 𝑛𝑅𝑇), you can get: 

 
3

2
𝑘𝐵𝑇 =

1

2
𝑚𝑣𝑟𝑚𝑠

2  

 

which corresponds to the kinetic energy of the individual gas molecule at the temperature T. 

 

Now we are ready to derive the Maxwell-Boltzmann Distribution! 

  



3. The Maxwell-Boltzmann Distribution 
 

From section 2, we derived, 

𝑃𝑉 = 𝑛𝑚𝑁𝐴〈𝑣𝑥
2〉 

From the ideal gas law, 

 

𝑃𝑉 = 𝑛𝑚𝑁𝐴〈𝑣𝑥
2〉 = 𝑛𝑅𝑇 

From the above, 

 

〈𝑣𝑥
2〉 =

𝑘𝐵𝑇

𝑚
 

 

Another way to calculate 〈𝑣𝑥
2〉 is using the probability function that we derived from section 1. 

 

 

〈𝑣𝑥
2〉 = ∫ 𝑣𝑥

2𝑃(𝑣𝑥)
∞

−∞

𝑑𝑣𝑥 

since 

𝑃(𝑣𝑥) = √
𝐵𝑥

𝜋
∙ 𝑒−𝐵𝑥𝑣𝑥

2
 

(Be aware that P now indicates the probability function rather than the pressure.) 

Then, 

〈𝑣𝑥
2〉 = √

𝐵𝑥

𝜋
∫ 𝑣𝑥

2 ∙ 𝑒−𝐵𝑥𝑣𝑥
2

∞

−∞

𝑑𝑣𝑥 

 

Since the solution for modified Gaussian function is as below, 

 

∫ 𝑥2𝑒−𝛼𝑥2
𝑑𝑥

∞

−∞

=
√𝜋

2
𝛼

−3
2⁄   (𝑠𝑒𝑒 𝑎𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝑓𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛) 

 

〈𝑣𝑥
2〉 = √

𝐵𝑥

𝜋
×

√𝜋

2
× 𝐵𝑥

−3
2⁄ =

1

2𝐵𝑥
=

𝑘𝐵𝑇

𝑚
 

 

𝐵𝑥 =
𝑚

2𝑘𝐵𝑇
 

 

𝑃(𝑣𝑥) = √
𝑚

2𝜋𝑘𝐵𝑇
∙ 𝑒

−
𝑚𝑣𝑥

2

2𝑘𝐵𝑇 

 

∴ 𝑃(𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2) =  𝑃(𝑣𝑥)𝑃(𝑣𝑦)𝑃(𝑣𝑧) =

𝑚

2𝜋𝑘𝐵𝑇

3
2⁄

∙ 𝑒
−

𝑚
2𝑘𝐵𝑇(𝑣𝑥

2+𝑣𝑦
2+𝑣𝑧

2)
 

 

           =
𝑚

2𝜋𝑘𝐵𝑇

3
2⁄

∙ 𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 



Finally,  

𝑃(𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2) 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 =

𝑚

2𝜋𝑘𝐵𝑇

3
2⁄

∙ 𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 

And  

𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 =
4

3
𝜋[(𝑣 + 𝑑𝑣)3 − 𝑣3] ~ 4𝜋𝑣2𝑑𝑣 

 

𝑚

2𝜋𝑘𝐵𝑇

3
2⁄

∙ 𝑒
−

𝑚
2𝑘𝐵𝑇(𝑣2)

 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 = 4𝜋 (
𝑚

2𝜋𝑘𝐵𝑇
)

3
2⁄

∙ 𝑣2 ∙ 𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 ∙ 𝑑𝑣 

 

Thus, 

𝑃(𝑣)𝑑𝑣 = 4𝜋 (
𝑚

2𝜋𝑘𝐵𝑇
)

3
2⁄

∙ 𝑣2 ∙ 𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 ∙ 𝑑𝑣 

 

The Maxwell-Boltzmann Distribution of gas molecular speed at thermal equilibrium is 

 

𝑃(𝑣)𝑇 = 4𝜋 (
𝑚

2𝜋𝑘𝐵𝑇
)

3
2⁄

∙ 𝑣2 ∙ 𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 

 

If you plot the equation above, these will look like as below 

 
Figure 3.1 Maxwell-Boltzmann distribution with regard to different temperature of H2 (left) and with 

regard to different mass at 300K (right) 

 

As you can see from figure 3.1, with lighter mass and higher temperature, gas molecules can 

be distributed wider reaching to high speed region. 

  



4. Appendix: Derivation of ∫ 𝒙𝟐𝒆−𝜶𝒙𝟐
𝒅𝒙

∞

−∞
=

√𝝅

𝟐
𝜶

−𝟑
𝟐⁄  

 

∫ 𝑥2𝑒−𝛼𝑥2
𝑑𝑥

∞

−∞

=
√𝜋

2
𝛼

−3
2⁄  

From above, 

𝑥2𝑒−𝛼𝑥2
= −

𝑑(𝑒−𝛼𝑥2
)

𝑑𝛼
 

Thus, 

∫ 𝑥2𝑒−𝛼𝑥2
𝑑𝑥

∞

−∞

= ∫ −
𝑑(𝑒−𝛼𝑥2

)

𝑑𝛼
𝑑𝑥

∞

−∞

= −
𝑑

𝑑𝛼
∫ 𝑒−𝛼𝑥2

𝑑𝑥
∞

−∞

 

 

Now we got simple Gaussian integral: ∫ 𝑒−𝛼𝑥2
𝑑𝑥

∞

−∞
= √

𝜋

𝛼
 

 

∴ −
𝑑

𝑑𝛼
∫ 𝑒−𝛼𝑥2

𝑑𝑥 =
∞

−∞

−
𝑑

𝑑𝛼
(√

𝜋

𝛼
) =

√𝜋

2
𝛼

−3
2⁄  

 


