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1. Prelude to unimolecular reaction 

   

 We learned three major gas phase reaction mechanisms during freshman chemistry as below 

 

               Reactant → Product(s)    (1) 

 

         Reactant 1 + Reactant 2 → Product(s)    (2) 

 

            Reactant 1 + Reactant 2 + M → Product(s) + M   (3) 

           (where M is the third-body molecule) 

 

From (1) to (3), each mechanism is called unimolecular reaction, bimolecular reaction, 

termomolecular reaction. Surely, as you can see, unimolecular reaction seems to be the simplest 

reaction. However, Fermat’s Last Theorem looks simple on the surface at least and it had tortured many 

great beautiful minds for over almost 400 years before it was finally proved by Sir Andrew Wiles in 

1995. In case of this simply look reaction, it turned out to be surprisingly complicated and difficult to 

make good agreement between theoretical explanations and experimental data. Here, we will mainly 

focus on the timeline of the development of the theories starting from Lindemann-Hinshelwood theory 

to RRKM theory. Historical background will come first followed by deeper explanations. I mainly 

followed the stream based on Chemical Kinetics and Dynamics 2nd edition written by Jeffrey I. 

Steinfeld, Joseph S. Francisco and Wiliam L. Hase. So if you want to study deeper, I recommend you 

to revisit this book. 

 

 

2. Lindemann-Hinshelwood Theory: collisional-activation mechanism 
 

In 1922, Lindemann proposed a collisional-activation mechanism theory for thermal unimolecular 

reactions. In his paper, he mentioned that unimolecular reaction happens as below 

 

      A +M∗
𝑘1
→ A∗ +M     (4) 

      A∗ +M
𝑘−1
→ A +M∗     (5) 

       A∗
 𝑘2 
→ Product(s)     (6) 
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Here, A represents the reactant and M is the third-body molecule that collide with A. A* represents a 

molecule with sufficient energy to react and M* is the third-body molecule with energy, which could 

be A itself. (4) describes bimolecular collisions in which energy in M being transferred to A by collision 

with rate coefficient k1. Energized A* can go through deactivation by collision with M again as 

described in (5) or decomposition to the products as described in (6). It is assumed that reaction (5) is 

so efficient that every collision event between A* and M will end up being A and M* one hundred 

percent. This assumption is so-called ‘strong collision assumption’ for de-energizing reactant. This 

means that rate coefficient k-1 is equal to the gas-kinetic collision number Z1 which is already calculated 

in gas-kinetic theory.  

 

Okay, if we apply the steady-state hypothesis with regard to the concentration of A*, the overall rate of 

unimolecular reaction with regard to [A] would become as below 

 

unimolecular reaction rate =  𝑘𝑢𝑛𝑖[𝐴] = 𝑘2[𝐴
∗] 

 

and due to steady-stead assumption, 

 

𝑑[𝐴∗]

𝑑𝑡
= 0 = 𝑘1[𝐴][𝑀] − 𝑘−1[𝐴

∗][𝑀] − 𝑘2[𝐴
∗] 

 

      [𝐴∗] =
𝑘1[𝐴][𝑀]

𝑘−1[𝑀]+𝑘2
     (7) 

 

If we apply (7) to 𝑘2[𝐴
∗], 

 

unimolecular reaction rate =  𝑘𝑢𝑛𝑖[𝐴] =
𝑘1𝑘2[𝐴][𝑀]

𝑘−1[𝑀] + 𝑘2
 

 

As a result, 

 

      𝑘𝑢𝑛𝑖 =
𝑘1𝑘2[𝑀]

𝑘−1[𝑀]+𝑘2
     (8) 

 

This equation (8) have two major expressions for 𝑘𝑢𝑛𝑖 under different conditions.  

 

First, at high pressure condition where [M] →∞, we can ignore 𝑘2 in the denominator in (8). 

 

              𝑘𝑢𝑛𝑖,∞ =
𝑘1𝑘2

𝑘−1
~
[𝐴∗]

[𝐴]
× 𝑘2     (9) 

 

As you can see above, 
[𝐴∗]

[𝐴]
 represents the probability that the molecule is energized by collision and 

this represents the unimolecular reaction rate constant at high pressure. 

 

Second, at low pressure condition where [M] →0, we can ignore 𝑘−1[𝑀] in the denominator in (8). 

 

                      𝑘𝑢𝑛𝑖,0 = 𝑘1[𝑀]     (10) 

 

It is clear that (9) would result in first order reaction mechanism when combined with [A] and (10) 

would result in second order reaction mechanism when combined with [A]. 
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So Lindemann beautifully and qualitatively explained that at lower pressure, the unimolecular 

reaction rate constant would linearly increase and then at higher pressure, this will converge to 

constant value as described in below figure.  

 

 
([A] described in the figure above actually represents [M] in this paper. ka is equal to 𝑘1, k’a 

corresponds to 𝑘−1 and kb corresponds to 𝑘2. Open circles are experimentally observed values.) 

 

 

 

And the transition from the high-pressure rate constant 𝑘𝑢𝑛𝑖,∞ to 𝑘𝑢𝑛𝑖,0 is called Lindemann fall-off 

region. Usually, chemists denotes 𝑃1
2⁄
 as the pressure at which 

𝑘𝑢𝑛𝑖

𝑘𝑢𝑛𝑖,∞
=
1

2
 and you can get as below 

 

               𝑃1
2⁄
=
𝑘𝑢𝑛𝑖,∞

𝑘1
      (11) 

 

By modifying (8) with (9) and (10), we can get the expression for unimolecular reaction as below. 

 

             𝑘𝑢𝑛𝑖 =
𝑘𝑢𝑛𝑖,∞

1+
𝑘𝑢𝑛𝑖,∞
𝑘𝑢𝑛𝑖,0

=
𝑘𝑢𝑛𝑖,∞

1+
𝑘𝑢𝑛𝑖,∞
𝑘1[𝑀]

     (12) 

 

It is relatively easy to find 𝑘𝑢𝑛𝑖,∞ from experiment. So, the first try would be matching the experimental 

value of 𝑘1 with theoretical prediction. 𝑘1 was first calculated from the line-of-centers collision theory 

expression as below. 

 

      𝑘1 = 𝑍1exp (−
𝐸0

𝑘𝐵𝑇
)     (13) 

𝒌𝒖𝒏𝒊,∞ 
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Where 𝐸0  is simply equated to the high-pressure activation energy 𝐸∞ . However, this calculation 

turned out to show significant discrepancy from the experiment: The theory predicts fall-off region 

showing up at much higher pressure as compared to the experiment. Since the line-of-centers 

energization rate constant equation (13) only considers the frequency of collisions whose relative 

kinetic energy along the line of centers is greater than or equal to 𝐸0, there is no information about the 

internal energy of the reactant molecule. In 1926, Hinshelwood added the contribution of the internal 

degrees of freedom and classical probability of internal energy in the range from E to E + dE to the 

relative motion in order to overcome the threshold energy 𝐸0. Since larger the molecule is (having 

larger number of internal degrees of freedom), higher becomes the probability that a molecule can store 

huge energy greater than 𝐸0. As a result, energization rate constant 𝑘1is larger for a complex reactant 

molecule than for a simple one. Assuming classical degrees of freedom s for a certain reactant molecule, 

Hinshelwood found that d𝑘1 is energy dependent and after long derivation, it can be described as below. 

    

            𝑘1 =
𝑍1

(𝑠−1)!
(
𝐸0

𝑘𝐵𝑇
)
𝑠−1
exp (−

𝐸0

𝑘𝐵𝑇
)    (14) 

 

The above equation can be interpreted that the energization rate constant is a product of two terms: the 

line-of-centers hard sphere collision rate constant Z1 and the probability that the total energy of s 

classical harmonic oscillators for the reactant molecule exceeds 𝐸0, which can be derived from classical 

statistical mechanics (Derivation can be found in A2-33 in Appendix 2 of Chemical Kinetics and 

Dynamics 2nd edition written by Jeffrey I. Steinfeld, Joseph S. Francisco and Wiliam L. Hase). 

Now, if we apply (14) into (9), we can get 

 

        𝑘𝑢𝑛𝑖,∞ =
𝑍1𝑘2

𝑘−1(𝑠−1)!
(
𝐸0

𝑘𝐵𝑇
)
𝑠−1
exp (−

𝐸0

𝑘𝐵𝑇
)     

 

Here, note that we are assuming strong collision assumption. For this reason, we can say 𝑍1 = 𝑘−1 

and as a result, 

 

         𝑘𝑢𝑛𝑖,∞ =
𝑘2

(𝑠−1)!
(
𝐸0

𝑘𝐵𝑇
)
𝑠−1
exp (−

𝐸0

𝑘𝐵𝑇
)    (15) 

 

These (14) and (15) form the basis of Lindemann-Hinshelwood Theory of thermal unimolecular 

reactions. Lindemann fall-off curves calculated with this theory show significant improvement as 

compared to those calculated by Lindemann theory. However, significant discrepancies are still found 

between theoretical and experimental 𝑘𝑢𝑛𝑖 curves versus [M] at low pressure region. 

Recall (9) 

𝑘𝑢𝑛𝑖,∞ =
𝑘1𝑘2
𝑘−1

 

 

Since 𝑘𝑢𝑛𝑖,∞ and 𝑘−1 are constant in the assumption, if 𝑘1 increases with s in Lindemann-Hinshelwood 

theory, the dissociation rate constant 𝑘2 should decrease with s. Thus, the lifetime 𝜏 = 1 𝑘2
⁄  of the 

energized molecule (A*) increases when the molecule has a greater number of degrees of freedom s. 

This is somewhat intuitively expected since when the molecule can store energy more efficiently with 

more degrees of freedom, energized molecule can stay more stabilized, thus resulting in prolonged 

lifetime. However, at the same time, it is also reasonable to think about the energy dependency of k2. 

Higher the energy, there would be better chance for the molecules to decompose by increased k2. Since 

Lindemann-Hinshelwood theory assumes that k2 is energy independent constant, there had been several 

works to consider the energy dependent k2. 
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3. k2 as energy dependent rate constant k(E) 
 

Let us refresh!! 

  

         A +M∗
𝑑𝑘1
→  A∗(𝐸, 𝐸 + 𝑑𝐸) + M    (16) 

          A∗(𝐸, 𝐸 + 𝑑𝐸) + M
𝑘−1
→ A +M∗    (17) 

           A∗(𝐸, 𝐸 + 𝑑𝐸)
 𝑘2 
→ Product(s)    (18) 

 

So, in (16), Hinshelwood considered the energy dependency of dk1 and formulated k1. Strong collision 

assumption has been made in (17), which is energy independent. Now, in this section, we will discuss 

how statistical theories have been used to calculate  𝑘2  as a function of energy, expressed as k(E). If 

we apply the steady-state approximation to the energized intermediate A∗(𝐸, 𝐸 + 𝑑𝐸), we can get as 

below, 

 
𝑑A∗(𝐸, 𝐸 + 𝑑𝐸)

𝑑𝑡
= 0 = 𝑑𝑘1[𝐴][𝑀] − 𝑘−1A

∗(𝐸, 𝐸 + 𝑑𝐸)[𝑀] − 𝑘(𝐸)A∗(𝐸, 𝐸 + 𝑑𝐸) 

 

A∗(𝐸, 𝐸 + 𝑑𝐸) =
𝑑𝑘1[𝐴][𝑀]

𝑘−1[𝑀] + 𝑘(𝐸)
 

 

𝑑𝑘𝑢𝑛𝑖(𝐸, 𝐸 + 𝑑𝐸)[𝐴] = 𝑘(𝐸)A
∗(𝐸, 𝐸 + 𝑑𝐸) =

𝑘(𝐸)𝑑𝑘1[𝐴][𝑀]

𝑘−1[𝑀] + 𝑘(𝐸)
 

 

𝑑𝑘𝑢𝑛𝑖(𝐸, 𝐸 + 𝑑𝐸) =
𝑘(𝐸) ×

𝑑𝑘1
𝑘−1
⁄

1 +
𝑘(𝐸)

𝑘−1[𝑀]
⁄

 

 

𝑘𝑢𝑛𝑖 = ∫
𝑘(𝐸) ×

𝑑𝑘1
𝑘−1
⁄

1 +
𝑘(𝐸)

𝑘−1[𝑀]
⁄

=

∞

𝐸0

𝜔 ∫
𝑘(𝐸) ×

𝑑𝑘1
𝑘−1
⁄

𝜔 + 𝑘(𝐸)
 

∞

𝐸0

 

 

(∵ 𝑘−1[𝑀] = 𝜔; collision frequency) 
 

And as we discussed in equation (9), 

 
𝑘1

𝑘−1
=
[𝐴∗]

[𝐴]
 represents the probability that the molecule is energized by collision and this represents the 

unimolecular reaction rate constant at high pressure. So 
𝑑𝑘1

𝑘−1
 represents the equilibrium probability that 

the reactant molecule has energy in the range from E to E + dE. Thus, 
𝑑𝑘1

𝑘−1
 can be expressed as P(E)dE. 

After all these notational changes, equation becomes the familiar expression for the thermal 

unimolecular rate constant, 

 

     𝑘𝑢𝑛𝑖 = 𝜔∫
𝑘(𝐸)𝑃(𝐸)𝑑𝐸

𝜔+𝑘(𝐸)
 

∞

𝐸0
     (19) 
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According to the quantum mechanical Boltzmann distribution (Note that it is different from the 

Maxwell-Boltzmann distribution), P(E) can be expressed as below. 

 

    𝑃(𝐸𝑖) =
𝑔𝑖𝑒𝑥𝑝 (

−𝐸𝑖
𝑘𝐵𝑇
⁄ )

∑ 𝑔𝑖𝑒𝑥𝑝 (
−𝐸𝑖

𝑘𝐵𝑇
⁄ )𝑖

=
𝑔𝑖𝑒𝑥𝑝 (

−𝐸𝑖
𝑘𝐵𝑇
⁄ )

𝑄
     (20) 

 

(where gi is the degeneracy at energy Ei.) 

 

If energy is assumed to be continuous, then the number of states W(E) in the energy interval E to E + 

dE is equivalent to gi. If we divide W(E) with dE, we can get the density of states N(E). If we sum up 

all the number of W(E), we can get the total number of states G(E) having energy in the range 0 to E. 

These W(E), N(E) and G(E) are important terms when calculating unimolecular reaction rate constant 

and we will be discussing deeply in next section 4. 

 

So now, the only mystery term that has to be cleared in equation (19) would be k(E). Actually there are 

two quite different approaches. One is to consider the intramolecular motion of highly energized 

molecules, suggested by Slater in 1939.  In this approach, we are assuming the explicit picture of a 

molecule as an assembly of harmonic oscillators and decomposition is assumed to occur when a critical 

coordinate (e.g., a bond length or bond angle) attains a critical displacement. This one would not be 

covered in this paper. 

 

The other approach is based on statistical assumptions, so called RRK (Rice-Ramsperger-Kassel) 

theory. This RRK theory has been later followed by its extension, which is referred to as the RRKM 

(Rice-Ramsperger-Kassel-Marcus) theory. According to these theories, a molecule is assumed as a 

collection of coupled harmonic oscillators that can exchange energy freely under two main assumptions 

that 

 

i. All degenerate internal molecular states at energy E of the energized molecule A* are 

accessible and will ultimately lead to decomposition products. 

 

ii. Intramolecular Vibrational-energy Redistribution (IVR) of the energized molecule A* 

occurs on a time scale much shorter than the lifetime of decomposition: τ = 1/k(E). 

 

Since a collection of molecules in RRK and RRKM is assumed as microcanonical ensemble (Only the 

degenerate states whose energy is equated to the fixed energy of the system have non-zero probabilities 

and those probabilities will be all the same; Pi = 1/W where W is the degeneracy of the fixed energy 

level Esystem ), the assumption requires that each state have equal probability of decomposing so that a 

microcanonical ensemble will be still maintained during decomposition reaction. As a result, the 

unimolecular reaction rate constant will be described by only one time-independent rate constant k(E) 

in equation (19). Such a unimolecular system obeys the Ergodic Principle of statistical mechanics. (i.e. 

all accessible microstates are equiprobable over a long period time. RRK and RRKM are made in 

order to calculate this k(E). 
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4. RRK Theory  
 

RRK theory was developed independently but nearly simultaneously by Rice and Ramsperger (1927), 

and Kassel (1928). Rice and Ramsperger developed classical version of RRK theory and Kassel 

developed quantum version of RRK theory, which will become identical in the limit of a large 

excitation energy E.   

 

Classical version of RRK theory  

The key idea in classical version is the probability that a molecule having s-classical oscillators with 

total energy of E has energy greater than or equal to E0 in one chosen oscillator (critical oscillator 

leading to reaction). This probability is defined by the number of ways to attain this particular 

distribution divided by the total number of ways to distribute total energy E among the s-oscillators 

(i.e. 
one critical oscillator has energy ≥𝐸0

total ways of distributing 𝐸 𝑖n s−oscillators
). The numerator is equated to the classical density of states 

in harmonic oscillator, i.e., N(E) and the denominator is total ways of combination where the critical 

oscillator contains energy E0 + E′ and distributing the leftover energy E – E0 + E′ in the remaining s-1 

oscillators (refer to Appendix #1 for derivation of the classical density and sum of states: (A1-6) and 

(A1-5)). As a result, the probability for the critical oscillator (of the molecule having total energy of 

E) having energy greater than or equal to E0 is as below. 

 

[ ∫ 𝑑𝑁

𝑁(𝐸′=𝐸−𝐸0)

𝑁(𝐸′=0)

𝑁] 𝑁(𝐸)⁄  

 

= [ ∫
𝑑𝐸′

ℎ𝜈

𝐸−𝐸0

0

(
(𝐸 − 𝐸0 − 𝐸

′)𝑠−2

(𝑠 − 2)!∏ ℎ𝜈𝑖
𝑠−1
𝑖=1

)]                
𝐸𝑠−1

(𝑠 − 1)!∏ ℎ𝜈𝑖
𝑠
𝑖=1

⁄  

  1-critical oscillator have energy ≥E0 total ways of distributing E in s-oscillator 
 

After integration, the above equation becomes as below 

 

     Probability = (
𝐸−𝐸0

𝐸
)
𝑠−1

    (21) 

 

Thus, the rate constant k(E) is simply expressed as the multiplication between this probability and the 

vibrational frequency (unit: 1/s) for the critical oscillator, i.e., 

 

        𝑘(𝐸) = 𝜈𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 × (
𝐸−𝐸0

𝐸
)
𝑠−1
 [1/𝑠]    (22) 

 

Quantum version of RRK theory  

The basic idea in quantum version is very similar to that used for the classical version. However, in 

quantum theory, it is assumed that there are s identical oscillators in the molecule, all having frequency 

v. The energized molecule contains a total of j-quanta (i.e. total energy E = j·hv). The critical oscillator 

must contain m quanta for reaction to occur (E0 = m·hv). Following this assumption combined with the 

key idea in classical version, the probability for particular distribution can be expressed as below. 

 

Probability =
all cases in which a number of quanta in the critical oscillator ranges from 𝑚 to 𝑗

total ways of distributing 𝑗– quanta in 𝑠– oscillators
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The above equation can be also expressed as  

 

Probability =
𝐺(𝐸𝑗−𝑚 in 𝑠– 1 oscillators)

𝑊(𝐸𝑗 in s oscillators)
 

 

Since, 

    𝑊(𝐸𝑗) =
(𝑗+𝑠−1)!

𝑗!(𝑠−1)!
  and  𝐺(𝐸𝑗) =

(𝑗+𝑠)!

𝑗!𝑠!
   

(see Appendix #2 for derivation) 

       As a result, 

Probability =

(𝑗 − 𝑚 + 𝑠 − 1)!
(𝑗 − 𝑚)! (𝑠 − 1)!

(𝑗 + 𝑠 − 1)!
𝑗! (𝑠 − 1)!

=
(𝑗 − 𝑚 + 𝑠 − 1)! 𝑗!

(𝑗 − 𝑚)! (𝑗 + 𝑠 − 1)!
 

Since the rate constant k(E) is simply expressed as the multiplication between this probability and the 

vibrational frequency for the critical oscillator,  

 

     𝑘(𝐸) = 𝜈 ×
(𝑗−𝑚+𝑠−1)!𝑗!

(𝑗−𝑚)!(𝑗+𝑠−1)!
    [1/s]   (23) 

 

In the classical limit, where j ˃˃ s and j-m >> s, the quantum RRK rate constant k(E) becomes as below 

 

     𝑘(𝐸 = 𝑗ℎ𝜈) = 𝜈 (
𝑗−𝑚

𝑗
)
𝑠−1

   [1/s]    (24) 

 

using Stirling’s approximation (Appendix #3). 

 

As you can see, the equation (24) and (22) is same when (hν)s-1 is multiplied to both the numerator and 

denominator in (24). From equation (22), we can say that the RRK rate constant depends on both the 

number of vibrational degrees of freedom and the energy in excess of E0 (activation energy). If we 

express equation (22) visually for several s values, with y-axis of k(E)/ν and with x-axis of E / E0, this 

will be as below. 

 
(Comparison of k(E) between Lindemann-Hinshelwood (s=1) and classical RRK theory (s>1)) 



9 

 

From the figure above, two important features can be found. First, with increasing excess 

energy, the rate constant increases towards its maximum value of ν (which corresponds to 

energy independent rate constant k2 in Lindemann-Hinshelwood theory). Second, for a 

particular value of total energy E, the rate of constant decreases with increasing number of s. 

These features are pretty intuitive in the sense that for larger molecule with larger number of 

vibrational modes, there are more ways to distribute the energy and hence less chance for 

energy to be localized in the critical mode (i.e. more stable the molecule becomes). 

Now, if we apply this energy dependent k(E) in equation (19) to get kuni… 

 

𝑘𝑢𝑛𝑖 = 𝜔 ∫
𝑘(𝐸)𝑃(𝐸)𝑑𝐸

𝜔 + 𝑘(𝐸)
 

∞

𝐸0

=
𝜈 ∙ 𝑒

−𝐸0
𝑅𝑇⁄

(𝑠 − 1)!
∫
(
𝐸 − 𝐸0
𝑅𝑇

)
𝑠−1

∙ 𝑒−
𝐸−𝐸0
𝑅𝑇 ∙

𝑑𝐸
𝑅𝑇

1 +
𝜈
𝜔 (
𝐸 − 𝐸0
𝐸 )

𝑠−1

∞

𝐸0

 

 

 (since 𝑃(𝐸)𝑑𝐸 =
𝑑𝑘1
𝑘−1

=
1

(𝑠 − 1)!
(
𝐸

𝑘𝐵𝑇
)
𝑠−1

𝑒
−𝐸

𝑘𝐵𝑇
⁄

(
𝑑𝐸

𝑘𝐵𝑇
)) 

and if we replace  

𝑥 =
𝐸 − 𝐸0
𝑅𝑇

      &       𝑏 =
𝐸0
𝑅𝑇

 

we can get, 

𝑘𝑢𝑛𝑖 =
𝜈 ∙ 𝑒

−𝐸0
𝑅𝑇⁄

(𝑠 − 1)!
∫

𝑥𝑠−1 ∙ 𝑒−𝑥 ∙ 𝑑𝑥

1 +
𝜈
𝜔 (

𝑥
𝑏 + 𝑥

)
𝑠−1

∞

0

 

Recall that ω is the collision frequency. Thus, in the high-pressure limit (ω→ꝏ) and using the 

knowledge that ∫ 𝑥𝑠−1 ∙ 𝑒−𝑥 ∙ 𝑑𝑥 = (𝑠 − 1)!
∞

0
 (Appendix #4), kuni becomes the Arrhenius equation as 

below 

𝑘𝑢𝑛𝑖,∞ = 𝜈 ∙ 𝑒
−𝐸0

𝑅𝑇⁄   (25) 

Significant improvements have been made over the Lindemann-Hinshelwood theory by RRK 

theory. RRK theory gave reasonable agreement between experimental results and calculation. 

However, still, a value for s (i.e. the total number of vibrational modes in the molecule) was 

deviated from that calculated from RRK theory (e.g. one-fourth to two-thirds). Also, 

Arrhenius high-pressure thermal A-factors from experiments were 103 times larger than those 

derived from RRK theory (i.e. the frequency for the critical oscillator). These shortcomings 

of the RRK theory had later been overcome by RRKM theory.   
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5. RRKM Theory  
 

The RRKM theory applied several minor modifications to the RRK model. These modification includes 

microcanonical transition state theory, explicit consideration on vibrational, rotational, and zero-point 

energies. After the reactant (molecule A) gets energy, the energized molecule A* goes through 

isomerization or dissociation via the mechanism as below 

 

 

A∗
 𝑘(𝐸)
→  A‡ → Product(s) 

 

 

where A‡ represents the transition state of the reaction. In transition state theory, trajectories passing 

from A* to A‡ (or vice versa) are assumed to pass through this transition state only once and this is also 

assumed in the RRKM theory. Also, the internal degrees of freedom of A* and A‡ are designated as 

either active (energy can be exchanged freely between active modes during the reaction) or adiabatic 

(quantum state doesn’t change during the reaction). For example, external rotational modes are 

considered to be adiabatic due to conservation of angular momentum (constant of motion), while the 

vibrational and internal rotational modes are considered to be active.   

 

So from now on, we have to carefully treat the energies. First, in applications of RRKM theory, 

symmetric top approximation to both the energized molecule (A*) and the transition state (A‡). As a 

result, the rotational energy-level expression for a rigid symmetric top would be as below (refer to p.181 

from Spectra of Atoms and Molecules written by Peter F. Bernath) 

 

 

    𝐸𝑟( 𝐽, 𝐾) =
𝐽(𝐽+1)ℏ2

2𝐼𝑎
+
𝐾ℏ2

2
(
1

𝐼𝑐
−
1

𝐼𝑎
)     (26) 

 

 

where J is the total angular momentum quantum number and K is the angular momentum quantum 

number along the molecular axis c. Ix is the moments of inertia on the axes that is labeled as x. (A 

coordinate system used here is principal axis system: Prolate symmetric tops: Ic < Ia = Ib ; Oblate 

symmetric tops: Ic > Ia = Ib;) 

 

The J-dependent term in equation 26 is assumed to be adiabatic, while K-dependent term can be treated 

as either adiabatic or active. In the case of K adiabatic, the rate constant depends on total energy, E, and 

J and K quantum number. In a simplified RRKM model, K quantum number is assumed to be active 

and thus Er equals to J-dependent term only. The total energy E of the energized molecule can be treated 

as the sum of Ev (vibrational and internal rotational energy) and Er (external rotational energy). Since 

molecular motion from A* to A‡ involves a change in potential energy, the total energy of the transition 

state will be described as below. 

 

 

     𝐸‡ + 𝐸𝑟
‡ = 𝐸 − 𝐸0     (27) 

 

 

E0 is the potential energy difference between A* and A‡. E‡ is the sum of Ev
‡ (the vibrational and internal 

energy of the transition state) and Et
‡. (the translational energy of the transition state during 

isomerization) Visualization of this energy diagram is illustrated in the figure below. 
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(Energy diagram for the RRKM theory) 

 

The microcanonical transition state theory rate constant k(E) is given by 

 

     𝑘(𝐸) =
𝐺‡(𝐸−𝐸0)

ℎ𝑁(𝐸)
     (28) 

 

where G‡ refers to the sum of states in the transition state and N is the density of states in the reactant. 

 

In the RRKM theory, the rate constant k(E) is given by 

 

     𝑘(𝐸) =
𝐺(𝐸‡)

ℎ𝑁(𝐸𝑣)
      (29) 

 

As you can see, the numerator in the equation 29 is the sum of states for the active degrees of freedom 

in the transition state and the denominator is the density of states for the active degrees of freedom in 

the reactant. Note that if equation A1-5 and A1-6 are used for G (E‡) and N(Ev), k(E) becomes equal to 

equation 22. 

 

The RRKM rate constant can be also written as an explicit function of adiabatic rotational energy. 

 

     𝑘(𝐸, 𝐸𝑟) =
1

ℎ

𝐺(𝐸‡)

𝑁(𝐸−𝐸𝑟)
     (30) 

 

From equation 27, E‡ can be written as  

 

    𝐸‡ = 𝐸 − 𝐸0 − 𝐸𝑟
‡ = 𝐸𝑣 + 𝐸𝑟 − 𝐸0 − 𝐸𝑟

‡    (31) 

 

In a simplified RRKM model mentioned above, since the external rotational modes (J-dependent term 

in equation 26) are assumed to be adiabatic, their angular momentum L will be conserved during the 

isomerization. By the way, L is described as below 
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     𝐿 = √𝐽(𝐽 + 1)ℏ      (32) 

 

Then from equation 31,  

 

    𝐸𝑟 − 𝐸𝑟
‡ =

𝐿2

2𝐼𝑎
−

𝐿2

2𝐼𝑎
‡ = 𝐸𝑟 (1 −

𝐼𝑎

𝐼𝑎
‡)    (33) 

 

If we apply equation 33 into equation 30: 

 

     𝑘(𝐸, 𝐸𝑟) =
𝐺(𝐸−

𝐼𝑎

𝐼𝑎
‡𝐸𝑟−𝐸0)

ℎ𝑁(𝐸−𝐸𝑟)
    (34) 

 

Equation 34 is equivalent to  

 

     𝑘(𝐸𝑣 , 𝐸𝑟) =
𝐺(𝐸𝑣+𝐸𝑟[

𝐼𝑎

𝐼𝑎
‡ ]−𝐸0)

ℎ𝑁(𝐸𝑣)
    (35) 

 

In a more detailed and accurate treatment of external rotational energy, the RRKM rate 

constant is written as a function of total energy E and angular momentum quantum number J: 

 

      𝑘(𝐸, 𝐽) =
𝐺‡(𝐸,𝐽)

ℎ𝑁(𝐸,𝐽)
    (36) 

 

The K-dependent term in equation 26 is treated as an active and if this quantum number is 

considered in the rate constant calculation,  

 

     𝑁(𝐸, 𝐽, 𝐾) = 𝑁[𝐸 − 𝐸𝑟(𝐽, 𝐾)]   (37) 

 

    𝐺‡(𝐸, 𝐽, 𝐾) = 𝐺‡[𝐸 − 𝐸0 − 𝐸𝑟
‡(𝐽, 𝐾)]   (38) 

 

G‡(E,J) and N(E,J) are found for E and J by summing over contributions from all possible 

values of K: 

𝐺‡(𝐸, 𝐽) = ∑ 𝐺‡(𝐸, 𝐽, 𝐾)

𝐽

𝐾=−𝐽

 

 

𝑁(𝐸, 𝐽) = ∑ 𝑁(𝐸, 𝐽, 𝐾)

𝐽

𝐾=−𝐽

 

 

In this more detailed and accurate treatment of rotational energy, the total energy cannot be 

written as the sum of Ev + Er, since the rotational energy changes with quantum number K. 

 

Now, when it comes to determining an RRKM rate constant, we first need the information for 

calculating the sum and density of states in equation 36. These are the reaction total energy E, 

total angular momentum J, the reaction barrier E0, the harmonic vibrational frequencies and 
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moments of inertia for both the reactant and the transition state. Usually, E, J, and the reactants’ 

moments of inertia and harmonic vibrational frequencies can be obtained from the experiment. 

However, the other information related with transition state is usually indirect and can be 

obtained from ab-initio calculation using computational chemistry software such as Gaussian. 

Determining the transition state’s properties (E0, Ii
‡ and vi

‡) depends on the nature of the 

transition state and there are two general situations: (1) a saddle point exists between the 

reactants and the products, at which the transition state is located; (2) either no saddle point 

exists, as in the reverse reaction of barrier-less reaction (e.g. CH3 + H →CH4), or the saddle 

point region is very flat (so you see multiple, usually very small, negative 2nd derivative 

vibrational frequencies). For the latter case, the transition state’s position on the potential 

energy surface is energy or reaction coordinate dependent, which requires microcanonical 

variational transition state theory or Variational Reaction Coordinate Transition State Theory 

(VRC-TST) to find the proper submerged transition state. 

 

Provided with this set of essential information, the next step is evaluating the sum of states for 

the transition state, G‡(E,J), and the density of states for the reactant molecule, N(E,J). The 

internal vibrational degrees of freedom are usually treated as quantum harmonic oscillators, 

and there are two major ways to calculate the sum and density. One way is to apply the accurate 

Whitten-Rabinovitch approximation (Whitten and Rabinovitch, J. Chem. Phys. 1964; Tardy et 

al., J. Chem. Phys. 1968) that will not be considered here. The other way is direct state counting 

using Beyer-Swinehart algorithm (Beyer and Swinehart, Commun. Assoc. Comput. Machin. 

1973) on a computer. (refer to Appendix #5 for actual Matlab code and brief explanation of the 

principle)  

 

Finally, using equation 36, we can finally obtain RRKM rate constant k(E) in equation 19!! 
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Appendix #1: Classical calculation of density and sum of states in harmonic oscillator 

 
First, we need to think about the classical Hamiltonian of a single harmonic oscillator which is as below 

 

𝐻 (
𝑑𝑥

𝑑𝑡
, 𝑥) =

1

2
𝑚(
𝑑𝑥

𝑑𝑡
)
2

+
1

2
4𝜋2𝜈2𝑚𝑥2 

 

(since 𝜈 =
1

2𝜋
√
𝑘

𝑚
) 

 

If we replace the variables x and t with  

 

𝑞 = √𝑚 · 𝑥  
 

 𝑝 =
𝑑𝑞

𝑑𝑡
 

 

then the classical Hamiltonian of a single harmonic oscillator will look like  

 

             𝐻(𝑝, 𝑞) =
𝑝2

2
+
𝜆𝑞2

2
     (A1-1) 

where 

𝜆 = 4𝜋2𝜈2 
 

According to a theorem in classical statistical mechanics, the number of states for one degree of 

freedom with momentum p and coordinate q is 

 

The number of states =
𝑑𝑝𝑑𝑞

ℎ
 

 

where dp˖dq is the phase space volume associated with p and q. h is Planck’s constant which is 

minimum phase space volume constrained by the uncertainty principle. For this reason, the number of 

states, G(E), the total phase space volume Vs divided by hs where s refers to the degree of freedom. 

 

          𝐺(𝐸) =
𝑉𝑠

ℎ𝑠
=

1

ℎ𝑠
∮ 𝑑𝑝1⋯𝑑𝑝𝑠𝑑𝑞1
𝐻=𝐸

𝐻=0
⋯𝑑𝑞𝑠   (A1-2) 

 

In case of a single harmonic oscillator (i.e. a degree of freedom is one) 

 

               𝑉1 = ∫ ∫𝑑𝑝𝑑𝑞
𝐻=𝐸

𝐻=0
    (A1-3) 

 

The integral in equation A1-3 is simply the area of an ellipse with regard to the equation of an ellipse 

from (A1-1) as below. 

 

𝐻𝜓 = 𝐸𝜓 = (
𝑝2

2
+
𝜆𝑞2

2
)𝜓 

 

              ∴ 1 =
𝑝2

2𝐸
+
𝜆𝑞2

2𝐸
     (A1-4) 
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Since the area of an ellipse for ellipse equation 1 =
𝑥2

𝑎2
+
𝑦2

𝑏2
 is abπ, the phase volume V1 will be  

𝑉1 = 𝜋 × √2𝐸 × √
2𝐸

𝜆
=
𝐸

𝜈
 

and as a result, the classical sum of states is  

𝐺(𝐸) =
𝐸

ℎ𝜈
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Visualization of a single harmonic oscillator) 

 

Now, for s harmonic oscillators, the classical number of states is given by equation (A1-2) and the 

Hamiltonian for s harmonic oscillators is  

 

𝐻 =∑(
𝑝𝑖
2

2
+
𝜆𝑖𝑞𝑖

2

2
)

𝑠

𝑖=1

 

 

If one can notice that the above equation is the equation for a 2s-dimensional ellipsoid with semiaxes 

along pi and qi, the volume for this ellipsoid integrated from  H (pi , qi) = 0 to H (pi , qi) = E is… 

 

      𝑉𝑠 =
𝐸𝑠

𝑠!∏ 𝜈𝑖
𝑠
𝑖=1

     (A1-5) 

 

You might be curious of ‘s!’. But this factorial is for considering s indistinguishable oscillators. 

 

Finally, using equation (A1-2),  

 

               𝐺(𝐸) =
𝐸𝑠

𝑠!∏ ℎ𝜈𝑖
𝑠
𝑖=1

     (A1-5) 

 

and due to the definition of the density of states, N(E), 

 

              𝑁(𝐸) =
𝑑𝐺(𝐸)

𝑑𝐸
=

𝐸𝑠−1

(𝑠−1)!∏ ℎ𝜈𝑖
𝑠
𝑖=1

    (A1-6)  

p 

q 

H=0 
H=1 

H=2 

H=3 

H=E 

H=2 

H=1 

H=0 

H=3 

H=E 

···· 

 surface is the energy  
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Appendix #2: Quantum calculation of number and sum of states in harmonic oscillator 

 
Two assumptions are required on one certain molecule 

i. All the frequencies in the molecule are identical (same ν in each oscillators) (i.e. all energies 

are quantified, thus can be represented as Ei = i·hν 

ii. For s-oscillators each with frequency ν, and total molecular energy above zero-point energy is 

Etotal = j·hν 

 
(Distributing j-quanta in s-oscillators = W(Ej)) 

Thus, when it comes to calculating W(Ej), number of vibrational states at energy level Etotal = j·hν, 

we need to count all possible cases to distribute j-energy balls within s-oscillators as described in 

the figure above!! It is okay to put whole j quanta only into ‘oscillator 1’ or j/2 in ‘oscillator 1’ 

and the other j/2 in ‘oscillator s’. Each case will be different vibrational state, but every state has 

same total molecular energy Etotal = j·hν (Degeneracy!). We can use the concept of ‘walls & balls’ 

to calculate this degeneracy W(Ej). Let’s say we have s walls and j balls. Assume that when balls 

are on the left side of the nearest wall, then those balls are all belong to that wall. 

 

(Ordering j balls and s-1 walls and those balls and walls are indistinguishable) 

e.g. 

e.g. 
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Now, when it comes to G(Ej), sum of vibrational states from energy level E0 (= Zero Point Eenergy) 

to Ej (= j·hν), the basic idea is almost same with the way we did as above using the concept of ‘walls & 

balls’, but the main difference is not to fix the wall s (oscillator s). Rather, we use the right side 

of wall s. 

 

 

 

So as summary, for the molecule which is consist of s number of oscillators and has total energy 

of Etotal=j·hv, number of states and sum of states would be as below. 

 

 

     𝑊(𝐸𝑗) =
(𝑗+𝑠−1)!

𝑗!(𝑠−1)!
             (A2-1)  

       𝐺(𝐸𝑗) =
(𝑗+𝑠)!

𝑗!𝑠!
                (A2-2) 

   

 

  

e.g. 
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Appendix #3: Quantum RRK rate constant using Stirling’s approximation 

 

1) Stirling’s Approximation 

 

ln 𝑛! =∑ln 𝑗

𝑛

𝑗=1

≈ ∫ ln 𝑥𝑑𝑥
𝑛

1

= [𝑥 ln 𝑥]1
𝑛 = 𝑛 ln 𝑛 − 𝑛 − 0 + 1 

 

∴ ln 𝑛! = 𝑛 ln 𝑛 − 𝑛 + 1 

 

 

2) QRRK rate constant calculation 

 

𝑊𝒕𝒐𝒕 =
(𝑛∗ + 𝑠 − 1)!

𝑛∗! (𝑠 − 1)!
     &     𝑊‡ =

(𝑛∗ − 𝑛‡ + 𝑠 − 1)!

(𝑛∗ − 𝑛‡)! (𝑠 − 1)!
 

 

where…. 

 

Etot = ε*=n*hν 

 

Eact = ε‡=n‡hν 

 

Wtot is the number of distributing n* quanta in s normal modes. 

 

W‡ is the number of distributing AT LEAST n‡ quanta (required activation energy) 

in certain normal mode. This equals to the number of distributing n*– n‡ quanta in 

other s–1 normal modes. 

 

Thus, we have to use 𝐺(𝐸) =
(𝑗+𝑠)!

𝑗!𝑠!
 formula of A2-2 for ‘s–1 oscillators’ 

 

Then, probability for a particular oscillator that has at least n‡ quanta and all s-

oscillators to have total energy (n* quanta) is the ratio of W‡/ Wtot = P‡ = [A‡]/[A*] 

 

From equation 23, 

 

(𝑗 − 𝑚 + 𝑠 − 1)! 𝑗!

(𝑗 − 𝑚)! (𝑗 + 𝑠 − 1)!
     

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜
→                𝑃‡ = 

𝑊‡

𝑊𝒕𝒐𝒕
=
(𝑛∗ − 𝑛‡ + 𝑠 − 1)! 𝑛∗!

(𝑛∗ + 𝑠− 1)! (𝑛∗ − 𝑛‡)!
 

 

 

In the classical limit, where j >> s and j – m >> s,  
(𝑗−𝑚+𝑠−1)!𝑗!

(𝑗−𝑚)!(𝑗+𝑠−1)!
  can be 

approximated to (
𝑗−𝑚

𝑠
)
𝑠−1

using Stirling’s Approximation 
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ln 𝑃‡ = ln[(𝑛∗ − 𝑛‡ + 𝑠 − 1)!] + ln(𝑛∗!) − ln[(𝑛∗ + 𝑠 − 1)!] 
 

   = (𝑛∗ − 𝑛‡ + 𝑠 − 1) ln(𝑛∗ − 𝑛‡ + 𝑠 − 1) − 𝑛∗ + 𝑛‡ − 𝑠 + 1 + 1 + 

   (𝑛∗ ln 𝑛∗ − 𝑛∗ + 1) − ((𝑛∗ + 𝑠 − 1) ln(𝑛∗ + 𝑠 − 1) − 𝑛∗ − 𝑠 + 1 + 1) − 

   ((𝑛∗ − 𝑛‡) ln(𝑛∗ − 𝑛‡) − 𝑛∗ + 𝑛‡ + 1) 

 

= (𝑛∗ − 𝑛‡ + 𝑠 − 1) ln(𝑛∗ − 𝑛‡ + 𝑠 − 1) + 𝑛∗ ln 𝑛∗ − 

(𝑛∗ + 𝑠 − 1) ln(𝑛∗ + 𝑠 − 1) − (𝑛∗ − 𝑛‡) ln(𝑛∗ − 𝑛‡) 
 

  Since 𝑛∗ − 𝑛‡ ≫ 𝑠 − 1 (𝑗 ≫ 𝑠 & 𝑗 − 𝑚 ≫ 𝑠), 
 

  ((𝑎 + 𝑥) ln(𝑎 + 𝑥) ≈ 𝑎 ln 𝑎 + 𝑥(1 + ln 𝑎)  when  𝑥 ≪ 𝑎, do taylor expansion  

  and take the first two terms) 

 

   ≈ (𝑛∗ − 𝑛‡) ln(𝑛∗ − 𝑛‡) + (𝑠 − 1)(1 + ln(𝑛∗ − 𝑛‡)) + 𝑛∗ ln 𝑛∗ − 

𝑛∗ ln 𝑛∗ − (𝑠 − 1)(1 + ln 𝑛∗) − (𝑛∗ − 𝑛‡) ln(𝑛∗ − 𝑛‡) 
 

   = (s − 1)( 1 + ln(𝑛∗ − 𝑛‡) − 1 − ln 𝑛∗) = (𝑠 − 1) ln (
𝑛∗−𝑛‡

𝑛∗
) 

 

∴ ln 𝑃‡ ≈ (𝑠 − 1) ln (
𝑛∗ − 𝑛‡

𝑛∗
) 

 

𝑃‡ ≈ (
𝑛∗ − 𝑛‡

𝑛∗
)

𝑠−1

= (
𝑗 − 𝑚

𝑠
)
𝑠−1
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Appendix #4: Gamma function 
 

𝐺𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥 =?
∞

0

 

 

∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥
∞

0

+∫ −
𝑥𝑠

𝑠
𝑒−𝑥𝑑𝑥 =

∞

0

[
𝑥𝑠𝑒−𝑥

𝑠
]
0

∞

= 0 

∴ ∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥
∞

0

=
1

𝑠
∫ 𝑥𝑠𝑒

−𝑥
𝑑𝑥

∞

0

 

 

∫ 𝑥𝑠−2𝑒−𝑥𝑑𝑥
∞

0

=
1

𝑠 − 1
∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥
∞

0

 

 

∫ 𝑥𝑠−3𝑒−𝑥𝑑𝑥
∞

0

=
1

𝑠 − 2
∫ 𝑥𝑠−2𝑒−𝑥𝑑𝑥
∞

0

 

 

∫ 𝑥𝑠−4𝑒−𝑥𝑑𝑥
∞

0

=
1

𝑠 − 3
∫ 𝑥𝑠−3𝑒−𝑥𝑑𝑥
∞

0

 

 

⋮ 

 

∫ 𝑥𝑒−𝑥𝑑𝑥
∞

0

=
1

2
∫ 𝑥2𝑒−𝑥𝑑𝑥
∞

0

 

 

∫ 𝑒−𝑥𝑑𝑥
∞

0

= ∫ 𝑥𝑒−𝑥𝑑𝑥
∞

0

 

 

∴ 1 ∙ 2 ∙ 3⋯ (s − 1)∫ 𝑒−𝑥𝑑𝑥
∞

0

= (s − 1)! = ∫ 𝑑𝑥 ∙ 𝑥𝑠−1𝑒−𝑥
∞

0

 

 

∴ ∫ 𝑑𝑥 ∙ 𝑥𝑠−1𝑒−𝑥
∞

0

= (s − 1)! 
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Appendix #5: Beyer-Swinehart algorithm with Matlab code  

 
     function [N]=Beyer_Swinehart_Algorithm(v,s,n)    
     %  COUNT COMPUTES THE NUMBER OF PARTITIONS OF AN INTEGER 
     %  RESTRICTED TO v FOR INTEGERS IN THE RANGE 1 TO n. 
     %  INPUT:  s -- A POSITIVE INTEGER (total number of vibrational modes) 
     %          v -- AN ARRAY OF s POSITIVE INTEGERS (vibrational mode) 
     %          n -- AN INTEGER LARGER THAN THE MAXIMUM VALUE IN v (Energy) 

     %  OUTPUT: N -- AN ARRAY OF n INTEGERS, WHERE P(M) IS THE 

     %               NUMBER OF PARTITIONS OF M RESTRICTED TO v. 
     %  INITIALIZE N 
        N =zeros(n,1); 
     %  EACH PASS THROUGH THE OUTER LOOP BELOW TRANSFORMS N FROM 
     %  PARTITIONS RESTRICTED TO v(1), ..., v(i-1) TO 
     %  PARTITIONS RESTRICTED TO v(1), ..., v(i). 
        for i = 1 : s; 
        j = v(i); 
        jp1 = j + 1; 
        N(j) = N(j) + 1; 
           for m = jp1 :1: n; 
            mmj = m - j; 
            N(m) = N(m) + N(mmj); 
           end 
        end 
     end 
 

How does this algorithm work? This algorithm can cover all the possibilities as below. 

 

i. m < 𝑣𝑖  , 𝑁𝑣1 ,⋯,𝑣𝑖−1(𝑚) =  𝑁𝑣1 ,⋯, 𝑣𝑖−1,𝑣𝑖(𝑚) 

ii. m = 𝑣𝑖  , 𝑁𝑣1 ,⋯,𝑣𝑖−1(𝑚) + 1 = 𝑁𝑣1 ,⋯, 𝑣𝑖−1,𝑣𝑖(𝑚) 

iii. m > 𝑣𝑖  , 𝑁𝑣1 ,⋯,𝑣𝑖−1(𝑚) + 𝑁𝑣1 ,⋯, 𝑣𝑖−1,𝑣𝑖(𝑚 − 𝑣𝑖) =  𝑁𝑣1 ,⋯, 𝑣𝑖−1,𝑣𝑖(𝑚) 

           

v1 v2 v3 ··· vi-1 vi 

 𝑁𝑣1 ,⋯⋯,𝑣𝑖−1(𝑚) 

0 

0 

··· 

0 

𝑁𝑣1 ,⋯⋯, 𝑣𝑖−1,𝑣𝑖(𝑚 − 𝑣𝑖) 

0 

··· 

0 

1 

··· 

1 

··· 

𝑛𝑣𝑖,𝑚𝑎𝑥 − 1 

··· 

𝑛𝑣𝑖,𝑚𝑎𝑥 − 1 

𝑛𝑣𝑖,𝑚𝑎𝑥 

··· 

𝑛𝑣𝑖,𝑚𝑎𝑥 

∴ 𝑁𝑣1 ,⋯⋯,𝑣𝑖(𝑚) = 𝑁𝑣1 ,⋯⋯, 𝑣𝑖−1(𝑚) + 𝑁𝑣1 ,⋯⋯, 𝑣𝑖−1,𝑣𝑖(𝑚 − 𝑣𝑖) 


